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N U M E R I C A L  S I M U L A T I O N  O F  A N  O B L I Q U E L Y  I N C I D E N T  S O L I T A R Y  W A V E  

V.  B.  B a r a k h n i n  a n d  G.  S. K h a k i m z y a n o v  UDC 532.5:519.6 

Calculations using the finite-difference method with dynamically adaptive grids were performed 
within the framework of the Zheleznyak-Pelinovskii nonlinear-dispersion model and the three- 
dimensional potential flow model. The results are compared with calculations by other authors. 

I n t r o d u c t i o n .  Wiegel [1] describes the experimental investigation of Perroud [2] on the interaction 
of a solitary wave of amplitude al with a plane vertical wall on which the wave is incident at angle !bl. It  
is established that,  depending on the value of ~bi, the reflection of the wave from the wall can be regular or 
irregular (Mach reflection). In regular reflection, the crests of the incident and reflected waves intersect on 
the wall, and in Mach reflection, a third wave, called the Mach stem, appears between the wall and the point 
of intersection between the crests of the first two waves. Mach reflection is shown schematically in Fig. 1, 
where the wave crests are indicated by heavy lines. 
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Fig. 1. Diagram of Mach reflection. 

The oblique incidence of a wave on a wall was studied theoretically by Miles [3, 4]. Using a certain 
nonlinear-dispersion model of shallow water and assuming that  the amplitude of the incident wave ai is 
infinitesimal and r = O(ai), he obtained analytical formulas for the maximum run-up R, the amplitude 
ar of the reflected wave, the angle of reflection Cr, and the angle ~b. at which the Mach stem can be seen 
from the point A. Of the possible schemes of interaction of the wave with the wall, he used only those wave 
configurations that  were observed in the experiments of [2], i.e., double and triple configurations. In addition, 
it was assumed that  away from the interaction zone, all waves have the shape of solitons and, in the case of 
Mach reflection, the parameters of the waves satisfy additional conditions of resonance interaction. Under 
these assumptions, the following formula for the maximum run-up was obtained: 
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4 r 
R =  1 + ( 1 - 3 a i / r  for ~ > 1 ,  

(1  + - \ (3ai)i/2 ] for ~ai ~ 1. 

(1) 

Thus, if a solitary wave is incident on the wall at an angle, the maximum run-up can reach a value R,  = 4ai. 
A serious disadvantage of the work of [2] is that  the laboratory experiments were carried out in a rather 

shallow tank with a water  layer 4 cm deep. As is pointed out in [5], the shape of a wave propagating in such 
a thin layer changes considerably because of capillary and viscous effects, so that the wave interacting with 

the wall has a shape different from that  prescribed at the initial time. In the experiments of Melville [5], the 
tank was 30 cm in depth,  but the values obtained for R did not exceed 2ai. Serebrennikova and Frank [6] 

proved that  such small values of the run-up are explained by the fact tha t  Melville [5] studied only. the initial 
stage of interaction of a wave with a wall, whereas stationary values of R are obtained only when the wave 
travels a distance tha t  is at least one order of magnitude larger than that  in the of experiments Melville. 
This implies that  the horizontal dimensions of the tank must be tens of times larger (Melville used a tank 
with dimensions of 18.3 • 6.2 m). Since creating such experimental installations is problematic at present, 
numerical simulations are of great significance in studies of the oblique incidence of soli tary waves. 

A numerical simulation of oblique incidence is described, for example, in [7] for ai/ho = 0.05, where 
h0 is the depth of the tank (below, we set h0 --- 1). The mathematical model from which Miles obtained 
the theoretical predictions was used in this calculation. It turned out tha t  the values of r  and Cr are in 
agreement with theoreticM values, but for ar and, especially, for the maximum run-up R, the disagreement 
with the theory is marked. Miles's theory is probably applicable for ai <:< 0.05 and small values of r At the 
same time, it is known [6-9] that as the values of ai and r decrease the t ime of at ta inment  of a quasistationary 
regime of interaction increases rapidly. If we take into account that with decrease in al, the length of a solitary 
wave and, hence, the number of grid points necessary for a good description of the wave increase, it becomes 
clear that  at present it is hardly possible to determine the upper bounds (for the parameters  ai and r of 
applicability of Miles's theory by numerical simulations. Funakoshi [7] points out that  even for ai --- 0.05, 
some calculations were impossible to finish because of high expenditure of computer resources. 

At the same time, the incidence of waves of finite rather than infinitesimal ampli tude is of practical 
interest. In the absence of both reliable experimental data and a theory for the oblique incidence of finite- 
amplitude waves, numerical simulation is the only method for s tudying this process. Funakoshi used the 
finite-difference me thod  of calculation for a wave with an amplitude ai = 0.05. Tanaka [9] employed the 
spectral method for a~ = 0.3. O. A. Serebrennikova and A. M. Frank performed a series of calculations 
for ai = 0.05-0.30 within the framework of the discrete model of an incompressible fluid. Since there are 
differences in numerical  results for some values of the parameters, calculations should be carried out on the 
basis of different mathematical  models and algorithms. 

The  present paper  reports results of calculations performed by the finite-difference method With dy- 
namically adaptive grids within the framework of the Zheleznyak-Pelinovskii nonlinear-dispersion model and 
the three-dimensional potential flow model. The  results are compared with calculations by other  authors. 

1. M e t h o d  o f  So lu t ion .  First of all, we note that all da ta  are given in dimensionless variables. 
Spatial variables are made dimensionless by division by h0 and the t ime was multiplied by x / / ~ ,  where g 
is the acceleration of gravity. 

The  flow domain  is shown in Fig, 1. At t = 0, the crest line of the solitary wave is parallel to the 
Oy axis, and the crest has abscissa x0; in calculations using the nonlinear-dispersion model, the point x0 is 
chosen to the right of the interval AD,  and it is chosen to the left of this integral for the potential  flow model. 

For the nonlinear-dispersion model, the solitary wave at the initial t ime is given by the formulas 

77(x, y, 0) = ai sech2X, X = x/3ai/(4(ai + 1))(x - x0); (2) 

u ( x , y , 0 )  = u0 /(1 + v ( x , y , 0 )  = 0, 
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where U0 -- ~ .  For the potential flow model, we use Ovsyannikov's formulas [10] which, after elementary 
transformations, become 

~(x, y, 0) = a~ sech2X, 

2 3i, z + 1 , 2  ~ 1 1  3 _ rl sech4X], 77 a i 
u(x ,y , z ,O)=Uo l + l  U 0 [ 1 - ~ \ ~ - - ~ /  ][2 sech2X+~-~-~ 

v(x, y, z, O) = O, w(x, y, z, O) = ~ (1 + z) cosh X sinh X/(ai  + cosh2X) 2. 

In these equations, r/is the elevation of the free surface, and u, v, and w are the velocity components. 
Numerical implementation of the Zheleznyak-Pelinovskii nonlinear-dispersion model [11] is complicated 

by the presence in the equations of mixed higher-order derivatives with respect to time and spatial variables. 
The order of these derivatives can be reduced by introducing new dependent variables in such a way as to 
split the original system of equations into an elliptic equation and an inhomogeneous hyperbolic system [12]. 
For numerical calculation of the split system, we use an explicit finite-difference predictor--corrector scheme 
with automatically adjustable approximation viscosity [13]. We use the approximation of the nondivergent 
part of the hyperbolic system at the predictor step of the scheme and the approximation of the divergent 
part at the corrector step. Before both steps of the predictor-corrector scheme, the elliptic equation is solved 
by a 9-point scheme of the "oblique cross" type [14] with a self-adjoint positive definite operator, obtained 
by the integrointerpolation method of [12]. 

The calculation algorithm for three-dimensional potential flows of an ideal fluid with a free boundary 
is described in [15]. At each time step, the values of the potential ~ at the free-surface grid points are first 
determined. Then, the Laplace equation written in a moving curvilinear coordinate system is solved by the 
iterative method of successive over-relaxation, and values of the potential are determined at the grid points in 
the interior of tile domain and on the fixed rigid boundaries. A new position of the free surface 7/is obtained 
from the kinematic condition, and an adaptive grid is constructed for tn+l. At each time step, the cycle of 
calculations is repeated several times until the quantities T and ~ are computed with specified accuracy. 

In numerical calculations of the problem, we used curvilinear grids that were adaptable to the shape of 
the domain and depended on the solution. These grids have certain advantages in comparison with uniform 
grids because of simpler realization of the boundary conditions. In addition to this, owing to the adaptation 
of the grid to the solution, "high accuracy is attained for a small number of grid points by increasing their 
concentration in the regions of singularities of the phenomenon studied: in the neighborhood of the crests of 
the incident and reflected waves, the Mach stem, and the region of run-up. 

When curvilinear grids are used, the moving domain ~(t) occupied by the fluid at each time t is 
mapped onto a fixed calculation domain Q which is a unit square or a unit cube, depending on the dimension 
of the problem. This mapping is performed on the basis of the on-to-one nondegenerate transformation of 
the coordinates. The equations and initial and boundary conditions are written in a new coordinate system 
[12, 15]. 

In calculations using the two-dimensional nonlinear-dispersion model, the grid is constructed as follows 
[16]. In the direction of wave propagation, the grid points are concentrated by the one-dimensional equidis- 
tribution method, which takes into account the position of the grid points at the previous time step, and the 
controlling function is chosen so that the maximum concentration of the grid is achieved in the regions of 
maximum elevation of the free surface 7/. Along the second direction, the grid points are arranged according 
to the law of geometric progression, concentrating at the wall OAB (see Fig. 1). 

For three-dimensional problems, the grid is constructed by a combined method whose main idea is that 
the one-dimensional equidistribution method is used for each coordinate direction. Along the first and second 
coordinate directions, the concentration of the grid points depends on rl, and along the straight coordinate 
lines issuing from the bottom grid points and intersecting the free surface, the grid point concentration 
depends on the absolute value of the velocity. 
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Fig. 2. Dependence of R/ai on " ~ b i / ~ :  the points are calculation 
results; the solid curve refers to the theoretical dependence (1) 
and the dashed curves refer to the theoretical dependence (3) for 
as = 0.1 (I) and 0.5 (II); for ai = 0.05, points 1 refer to data of 
[7] and 2 to the PFM, for a, = 0.1, points 3 and 4 refer to the 
NLDM and PFM, respectively, for ai -= 0.3, points 5 and 6 refer 
to the data of [9] and [6], respectively, and points 7 refer to the 
PFM, and for ai = 0.5, points 8 refer to the PFM. 

The above algori thm of constructing three-dimensional adaptive grids allows one to obtain only slight 
changes in the amplitude and shape of the incident wave even when it travels distances of about 30 its length. 
Note that in [8], where the grids were adapted only to the boundaries of the domain, the amplitude of the 

wave decreased by 10% at the corresponding time. 
The boundary conditions were specified as follows. The artificial boundary CDE (see Fig. 1) was 

placed away from the wall OAB [at distances of 40-70 for the nonlinear-dispersion model (NLDM) and 80 
for the potential flow model (PFM)], and as a result, the boundary did not affect the interaction between tile 
incident wave and the wall for a long time. Therefore, the partial derivatives of the required function with 
respect to y were set equal to zero on the artificial boundary. On the rigid wall OAB, the condition of no 

normal flow was used. 
Calculation were performed in a moving calculation domain at tached to the crest of the incident wave. 

A similar technique was used, e.g., in [6, 7]. The  conditions of unper turbed  flow were used on the right side 

of the calculation domain. On the left side, we usually imposed the condition of no normal flow, which did 
not change the flow pa t te rn  markedly since the waves generated by this condition did not penetrate into the 
calculation domain. However, in calculations using the potential flow model, for angles r  40 ~ on the left 
boundary it is appropriate  to use extrapolat ion along the crest of the reflected wave. 

In calculations using the nonlinear-dispersion model, the dimension of the calculation domain along 
the Ox axis was 62.5 and the number of grid points was 251 x 21. For the three-dimeusional potential  flow 
model, the dimension of the calculation domain ranged from 40 to 30 (decreased with increase of a~) and the 
number of grid points was varied from 121 x 81 x 8 to 121 x 81 x 12. For verification of convergence, some 

calculations were carried out with a 241 x 161 x 16 grid. 
2. R e s u l t s  o f  N u m e r i c a l  S i m u l a t i o n .  Figure 2 shows the run-up Ri/ai versus the quanti ty r  

for various amplitudes of the incident wave. Evidently, for each ai, this dependence is not monotonic. For 
small r the value of R/ai is close to unity. Then, with increase in r the relative run-up also increases. For 
a certain critical r the run-up reaches a maximum value, and with a fur ther  increase in r it decreases 
monotonically. Similar qualitative behavior of the dependence of R/ai on ~b~/3v~i was obtained in [6, 7, 9]. 
Quantitative comparison gives satisfactory agreement between calculations using the potential flow model 
and the results of [9] for ai = 0.3. A large difference between our results and the calculations of [6, 7] is 

observed in the neighborhood of the critical angles of incidence r The  discrepancy of the results decreases 
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with distance from this point. 
Theoretical  curves of (1) are shown in Fig. 2. One can see that  for finite values of the amplitude 

ai (even for ai = 0.5) the calculation results are near the solid curve of (1) (see the second equation) for 
Mach reflection, although this curve was obtained for the run-up of waves of infinitesimal amplitude. At the 
same t ime,  in our calculations and in the calculations of [6, 7, 9], the values of R/ai  differ markedly from 
dependence (1) (see the first equation) for regular reflection. The calculation data are shifted to the left from 
curve of (1) (see tim first equation). The maximum of the quanti ty R/a~ is also shifted to the left from the 
point r = 1, and the shift becomes larger with increase in a/. In contrast, in calculations for a~ = 0.05 
using the  potential flow model, the maximum is attained at r 1. 

We also note that  in our calculations, in contrast to the calculations of [6, 7] and the theory of [4], the 
quanti ty R / a i  behaves rather smoothly when r is changed. This is especially evident for ai = 0.05. 

Miles [3] obtained one more formula for the run-up of a wave of infinitesimal amplitude with regular 
reflection: 

R = 2 + a i (  32 3 + 2sin2 r  (3) 
ai 2 si ~i 

This formula is derived without the assumption that ~bi is small, i.e., for r >> ai. M. Tanaka compared the 
values he obtained for the maximum run-up in regular reflection with the values of the run-up calculated from 
Eq. (3) and  obtained qualitative agreement, although the condition r  a /was  violated in the calculations. 
Two curves of (3) for ai = 0.1 and ai = 0.5 are shown in Fig. 2. One can see that in the case of ai = 0.1, 
the calculated run-up for the NLDM agrees with formula (3) for r > ~bi,.. For the indicated amplitude, the 
PFM yields calculated values that  agree with (3) for r > 1. 

In the  interval ai = 0.1-0.2, the point of intersection of curve (3) and the Mach reflection curve (1) (see 
the second equation) differs only slightly from the point corresponding to the maximum run-up in calculations 
using the  NLDM. For amPlitudes ai >~ 0.3, calculations of regular reflection using the PFM agree with formula 
(3), and,  as for the NLDM, the calculation data  agree with dependence (1) (see the second equation) in the 
region of Mach reflection. 

Another  important characteristic of the process considered is the amplitude of the reflected wave at. 
To calculate this amplitude, we used the following approach. First, on every coordinate curve of the second 
family, we found the grid point at which the elevation of the reflected wave is maximum. These grid points 
were then  used to draw, by the least squares method, a line that  was identified with the crest of the reflected 
wave. T h e  left and right parts of the crest adjacent to the 'left boundary of the calculation domain and 
the region of joining of the reflected and incident waves (the point P in Fig. 1) were eliminated from the 
subsequent analysis; the change in elevation along the entire remaining part of the crest did not exceed 3%. 
Finally, as ar we used the arithmetic mean of 77 at the grid points in this part of the crest. 

F igure  3 shows the dependence of a,./ai on ~bi/3x/g-'~. One can see that  our results and the calculation 
results obtained in [6, 7, 9] are in qualitative agreement with Miles's theory, according to which 

a~ / 1 for ~b2/(3ai) ) 1, 
- -  = (4 )  
ai ~ r for ~b2/(3ai) ~ 1. 

As noted  in [6], calculations agree with the quadratic dependence (4) in the case of Mach reflection. For ai = 
0.05, results  of calculations using the P F M  coincide with theoretical da ta  both qualitatively and quantitatively. 
For larger values of ai, the calculated curves are shifted to the left from the theoretical curve and are steeper 
than the latter.  

Curves of the angles of reflection are shown in Fig. 4. The angle ~b~ is defined as the angle between 
the normal  to the wall and the rectilinear crest of the reflected wave and is determined by the procedure 
described above. One can see that  for ai = 0.05, the calculated da ta  are in good agreement with the results 
of Funakoshi  and with Miles's theory. Wi th  increase in the amplitude of the incident wave, the disagreement 
with the  values calculated from the theoretical formula 
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Fig. 3. a , . / a i  versus ~i/3x/'3-~i: the points are calculation results; the solid curve refers to the theoret ical  
formulas of Miles [3, 4]; for a~ = 0.05, points 1 refer to da ta  of [7] and points 2 refer to the PFM, for a~ = 0.3, 
points 3 and 4 refer to the da ta  of [9] and [6}, respectively, and point 5 refer to the PFM, and for ai = 0.5, 
points 6 refer to the PFM.  

Fig. 4. ~ versus ~Oi: the points are calculation results; the solid curve refers to the theoretical formulas of 
Miles [3, 4] for a~ = 0.5 (I), 0.3 (II), 0.1 (III), and 0.05 (IV); for ai = 0.05, points 1 refer to the da ta  of [7] 
and points 2 refer to the PFM,  for ai = 0.1, points 3 refer to the da ta  of [6] and points 4 refer to the PFM,  
for a, = 0.3, points 5 and 6 refer to the data  of [9] and [6], respectively, and points 7 refer to the PFM,  and 
for ai = 0.5, points 8 refer to the PFM. 
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Fig. 5. Dependence of r  on 9i/3,r the points are calculation results; the solid curves refer to the 
theoretical formulas of Miles [3, 4] for ai = 0.5 (I), 0.3 (II), 0.1 (III), and 0.05 (IV); for ai = 0.05, points 1 
refer to the da ta  of [7] and points 2 refer to the PFM,  for ai = 0.1, points 3 refer to the PFM, for ai = 0.3, 
points 4 refer to the da t a  of [9] and points 5 refer to the PFM, and for ai = 0.5, points 6 refer to the PFM.  

Fig. 6. The type of reflection for various values of a~ and ~i: curves I and II refer to relations r  = 3x/-3~ 
and (6), respectively; points  1 and 2 refer to Mach and regular reflections, respectively. 

r for r i> i, 

Cr = (3ai) I/2 for r 4 1 

becomes more marked; at the same time, there is agreement with the calculations of [6, 9] (except for the 

angle ~i = I0~ . We also note that in the calculations for the potential flow model, the curves have a larger 

deflection than in calculations by other authors. It is interesting that even for a very large amplitude ai -- 0.5, 

the qualitative character of the dependence remains the same as for ai - 0.2 and ai -- 0.3. In addition, with 
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decrease in r the values of r approach the theoretical value 3v/~. 
Figure 5 shows the angle r (see Fig. 1) versus r  For ai = 0.05, the numerical results obtained 

herein and by Funakoshi agree again with the theoretical formula 

0 for ~b2i/(3ai) ~ 1, 

~* = ( a i / 3 ) U 2 ( 1 -  r  1/2) for ~,~ / (3a i )  <~ 1. 
(5) 

However, with increase in the amplitude of the incident wave, the values of r  obtained by the potential 
flow model deviate more and more from formula (5). And the difference is not only qualitative but also 
quantitative. The curve of (5) for Mach reflection is a line segment whereas calculations yielded more 
complicated power-law dependences. 

Finally, using the results of calculations for the potential flow model, we determine the dependence of 
the type of reflection on the values of ai and ~bi. In the present work, the type of reflection is determined 
from the angle r  If by the moment t = 300, the condition r  < 0.5 ~ is satisfied and r  does not grow 
further, then the reflection is considered regular. Figure 6 shows the dependence of the reflection type on 
r and ai. One can see that for small amplitudes of the incident wave (ai < 0.08), the value of r that 
distinguishes Mach reflection from regular reflection agrees with Miles's formula ~bi = ~ .  Further, with 
increase in ai,  the quantity r becomes smaller than 3v/-3~/. For ai > 0.3, the value of r is determined with 
sufficient accuracy from the condition of the equality of expressions (1) (see the second equation) and (3), 
i.e., r is close to the root r of the equation 

0 sin 2 ~b 3 + 2 sin 2 = 

Comparison of the calculation results obtained by different authors shows that all results are in quali- 
tative agreement and considerable quantitative differences are obtained only for the run-up at the wall. For 
ai = 0.05, the values of Cr, aT, and r calculated using the potential flow model are consistent with the theo- 
retical predictions of Miles. For ai > 0.1, there is considerable disagreement with the theory. However, up to 
ai = 0.3, the calculations yields the same configuration of interacting waves as in Miles's theory. Moreover, 
in our cMculations, as in Miles's theory, the cross section of a reflected wave with ai <. 0.2 has the shape of 
a soliton, or, in other words, the neighborhood of its crest is described by expression (2) if in the latter one 
replaces ai by the calculated value of aT, sets x0 = 0, and uses, instead of x, the distance from the crest of 
the reflected wave in the perpendicular direction. 

At the same time, for ai > 0.3, a different scheme of interaction between the wave and the wall was 
observed in the calculations using the potential flow model. For example, for ai = 0.5, in the case of Mach 
reflection there are two reflected waves, and the crest of the Mach stem has no part with constant elevation 
(in contrast to the case ai <~ 0.3), decreasing just from the wall. It is interesting that for ai = 0.5, the cross 
sections of the Mach stem have the shape of two-dimensional solitary waves (2). In this case, in a certain 
range of values of r the amplitude of these waves is larger than the critical amplitude of a solitary wave, 
which is about 0.83. For example, for ai = 0.5 and r = 40 ~ after attainment of stationarity, the free-surface 
profile along the wall A B  (see Fig. 1) has the shape of a solitary wave with oscillations behind the crest and 
a maximum elevation of 1.32 at the point M. We emphasize that  the wave at the wall with this supercritical 
value of the amplitude propagates without breaking. The stability of this wave can probably be explained 
by the fact that for ai = 0.5 the flow pattern in the Mach stem is complex with velocities having nonzero 
component along the crest. 

This work was performed within the framework of the project No. 43 (Siberian Division, Russian 
Academy of Sciences) and supported by the Russian Foundation for Fundamental Research (Grant No. 97- 
01-00819). 
1014 



R E F E R E N C E S  

1. R. L. Wiegel, Oceanographical Engineering, Prentice-Hall, Englewood Cliffs, NJ (1964). 
2. P. H. Perroud, "The solitary wave reflection along a straight vertical wall at oblique incidence," PhD 

Thesis, Univ. Calif., Berkeley (1957). 
3. J. M. Miles, "Obliquely interacting solitary waves," J. Fluid Mech., 79, 157-169 (1977). 
4. J. M. Miles, "Resonantly interacting solitary waves," ibid., pp. 171-179. 
5. W. K. Melville, "On the Mach reflection of a solitary wave," J. Fluid Mech., 98, 285-297 (1980). 
6. O. A. Serebrennikova and A. M. Frank, "Numerical simulation of Mach reflection for solitary waves," 

Prikl. Mekh. Tekh. Fiz., No. 5, 15-24 (1993). 
7. M. Funakoshi, "Reflection of obliquely incident solitary waves," J. Phys. Soc. Jpn., 49, No. 6, 2371-2379 

(1980). 
8. G. S. Khakimzyanov, "On the numerical simulation of three-dimensional fluid flows with surface waves 

using adaptive grids," in: Proc. All- Union Colloquium on Methods and Problems of Wave Hydrodynamics 
(Rostov-on-Don, September 23-27, 1990), Krasnoyarsk (1990), pp. 103-108. 

9. M. Tanaka, "Mach reflection of a large-amplitude solitary wave," J. Fluid Mech., 248, 637-661 (1993). 
10. L. V. Ovsyannikov, "The parameters of cnoidal waves," in: Problems of Mathematics and Mechanics [in 

Russian], Nauka, Novosibirsk (1983), pp. 150-166. 
11. M. I. Zheleznyak and E. N. Petinovskii, "Physicomathematical models for the incidence of tsunami on a 

shore," in: Incidence of Tsunami on Shore [in Russian], Inst. of Appl. Phys., Gor'kii (1985), pp. 8-33. 
12. V. B. Barakhnin and G. S. Khakimzyanov, "On the algorithm of numerical solution for the equations of 

a nonlinear-dispersion model of shallow water," Vyehisl. Tekhnol., 1, No. 3, 5-20 (1996). 
13. V. B. Barakhnin and G. S. Khakimzyanov, "Adaptive-grid numerical solution of one-dimensional amd 

two-dimensional problems for the shallow-water equations," in: Adv. Math.: Comput. and Appl., Proc. 
of the AMCA-95, NCC Publisher, Novosibirsk (1995), pp. 144-153. 

14. A. A. Samarskii and V. B. Andreev, Finite-Difference Methods for Elliptic Equations [in Russian], Nauka, 
Moscow (1976). 

15. Yu. I. Shokin and C. S. Khakimzyanov, "Finite-difference method for calculating three-dimensional po- 
tential flows with a free boundary," Vychisl. Tekhnol., 1, No. 1, 154-176 (1992). 

16. V. B. Barakhnin and G. S. Khakimzyanov, "Application of dynamically adaptive grids in the problems 
of shallow-water theory," Vopr. Atom. Nauki Tekh., Set. Mat. Model. Fiz. Prots., 2, 36-44 (1997). 

1015 


